The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive multiobjective optimization (MOO)… Click to show full abstract
The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive multiobjective optimization (MOO) method over a posteriori methods in an unexplored field, namely the design of a biological treatment plant for drinking water production, that tackles the process drawbacks, contrarily to what happens in a traditional volumetric-load-driven design procedure. Specifically, we consider a groundwater denitrification biofilter, simulated by the Activated Sludge Model modified with two-stage denitrification kinetics. Three objectives were defined (nitrate removal efficiency, drawbacks on produced water, investment and management costs) and the interactive method NIMBUS applied to identify the best-suited design without any a priori evaluation, as for volumetric-load-driven design procedures. When compared to an evolutionary MOO algorithm, the interactive solution process was faster, more understandable and user-friendly and supported the decision maker well in identifying the most preferred solution (main design/operating parameters) to be implemented. Approach strength has been proved through both sensitivity analysis and positive experimental validation through a pilot scale biofilter operated for three months. In synthesis, without any "a priori" evaluation based on practical experience, the MOO design approach allowed obtaining a preferred Pareto optimal design, characterized by volumetric loading in the range 0.85-2.54 kgN m-3 d-1 (EBCTs: 5-15 min), a carbon dosage of 0.5-0.8 gC,dos/gC,stoich, with SRTs in the range 4-27 d.
               
Click one of the above tabs to view related content.