LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation.

Photo by austriannationallibrary from unsplash

Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers acclaimed as an eco-friendly substitute of hazardously polluting petrochemical plastics. Using industrial by-products as PHA feedstocks could improve its process economics and market implementation. Valorizing… Click to show full abstract

Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers acclaimed as an eco-friendly substitute of hazardously polluting petrochemical plastics. Using industrial by-products as PHA feedstocks could improve its process economics and market implementation. Valorizing the plenteous, nutritive pollutant whey as PHA production feedstock would be an excellent whey management strategy. This study aimed at whole/crude whey valorization for value-added PHA production using B. megaterium Ti3 innate protease, alleviating pretreatments. Response surface methodology (RSM) media optimization ascertained whey (%) as the key influential factor (p < 0.05). The optimized and validated RSM model (R2, 0.991; desirability, 1) facilitated 12.2, 11.5 folds increased PHA yield (2.20 ± 0.11 g/L) and productivity (0.05 gPHA/L/h). A positive correlation (r2, 0.95 and 0.87) was observed amid the innate enzymes (protease and lipase) and PHA production. The PHA was characterized by 1H and 13C NMR, GPC, TGA, and was identified as poly (3-hydroxybutyrate) (P3HB) by NMR. A significantly reduced roughness (110 ± 5.6 nm); increased hydrophilicity (8.6 ± 0.3 and 8.7 ± 0.5%), protein adsorption (68.75 ± 2.55 μg/cm2) and 1.6 folds higher biocompatibility achieved on poly (ethylene glycol) (PEG) blending compared to neat P3HB films. This is the first report on B. megaterium innate enzyme based whey valorization to PHAs also demonstrating its biomedical applicability.

Keywords: megaterium; whey valorization; production; biocompatibility; pha production

Journal Title: Journal of environmental management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.