LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unexpectedly higher soil organic carbon accumulation in the evapotranspiration cover of a coal bottom ash mixed landfill.

Photo from wikipedia

Monolayer barriers, which are usually known as evapotranspiration (ET) covers, have long been used as alternative final cover systems in waste landfills. Coal bottom ash was evaluated as a good… Click to show full abstract

Monolayer barriers, which are usually known as evapotranspiration (ET) covers, have long been used as alternative final cover systems in waste landfills. Coal bottom ash was evaluated as a good alternative to soil in landfill ET cover systems to increase the bottom ash (BA) recycling ratio in the past. In a previous study, applying BA promoted plant growth characteristics and improved the soil physicochemical properties, particularly the soil organic carbon (SOC) content. In this study, we investigated the effect of BA on the SOC increase by examining the chemical and physical characteristics of ET cover systems, and we compared BA mixed and pure soils. We collected two types of soil from the landfill cover, namely, BA mixed soil (BA 35% + soil 65%) and soil alone (100%), for treatments during the 5th year after installation. Bottom ash mixed soil has four times more SOC than the pure soil at the surface soil layer, but the SOC contents significantly decreased with the soil depth in BA mixed soil, and no differences were found between BA mixed soil and pure soil below a 25 cm soil depth. In addition, there was no significant difference in the chemical composition of the SOC according to a13C NMR. However, the allophane contents were significantly higher in BA mixed soil than pure soil, which physically protects the material from organic matter decomposition. Conclusively, the higher allophane content originating from BA might act as the primary factor in the high accumulation of soil organic carbon in the BA mixed soil layer by retarding the organic matter decomposition.

Keywords: soil organic; mixed soil; bottom ash; cover; organic carbon; soil

Journal Title: Journal of environmental management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.