LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and performance characterization of an efficient coal dust suppressant for synergistic combustion with coal dust.

Photo from wikipedia

Coal dust diffusion during coal transportation and storage causes serious environmental pollution. The existing dust suppressant in previous studies was unable to achieve the expected effects owing to severe wind… Click to show full abstract

Coal dust diffusion during coal transportation and storage causes serious environmental pollution. The existing dust suppressant in previous studies was unable to achieve the expected effects owing to severe wind damage and rain erosion. Therefore, the current study synthesized and prepared an efficient and applicable dust suppressant for coal transportation and storage. Infrared spectroscopy and scanning electron microscope experiments were conducted during the synthesis to analyze the microstructure changes in the synthetic products. Moreover, viscosity was used as the evaluation index in the single-factor experiments to obtain the optimal synthesis conditions. Performance measurement results showed that the prepared dust suppressant had a strong protective effect on coal powder and could effectively resist the impact of wind damage and rain erosion. Compared with other dust suppressants, the proposed dust suppressant prepared showed more evident positive effects and longer lasting action time in the quantitative test. Moreover, the dried product could synergistically combust with coal powder, thereby possibly mitigating the tedious post-treatment process and increasing the utilization rate of resources.

Keywords: dust suppressant; coal dust; dust; coal; synthesis

Journal Title: Journal of environmental management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.