LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrous oxide emission during denitrifying phosphorus removal process: A review on the mechanisms and influencing factors.

Photo from wikipedia

Excessive emissions of nitrogen (N) and phosphorus (P) pollutants are leading to increased eutrophication of water bodies. Biological N and P removal processes have become a research priority in the… Click to show full abstract

Excessive emissions of nitrogen (N) and phosphorus (P) pollutants are leading to increased eutrophication of water bodies. Biological N and P removal processes have become a research priority in the field of sewage treatment with the aim of improving sewage discharge standards in countries worldwide. Denitrifying P removal processes are more efficient for solving problems related to carbon source competition, sludge age conflict, and high aeration energy consumption compared to traditional biological N and P removal processes, but they are easy to produce nitrous oxide (N2O) in the process of sewage treatment. N2O is a greenhouse gas with a global warming potential approximately 190-270 times that of CO2 and 4-21 times that of CH4, which was produced and released into the environmental in denitrifying P removal systems under conditions of a low C/N ratio, high dissolved oxygen, and low activity of denitrifying phosphorus accumulating organisms (DPAOs). This paper reviews the emission characteristics and influencing factors of N2O during denitrifying P removal processes and proposes appropriate strategies for controlling the emission of N2O. This work serves as a basis for the development of new sewage treatment processes and the reduction of greenhouse gas emissions in future wastewater treatment plants.

Keywords: nitrous oxide; removal; removal processes; phosphorus; denitrifying phosphorus; emission

Journal Title: Journal of environmental management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.