LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling the dynamic of water-electricity conflict within and beyond megacity boundary.

Photo from wikipedia

Electricity demand in megacities may exert substantial stress on water resources, which is often expressed through the water scarcity footprint for electricity consumption (WSFE). Conversely, water scarcity may constrain electricity… Click to show full abstract

Electricity demand in megacities may exert substantial stress on water resources, which is often expressed through the water scarcity footprint for electricity consumption (WSFE). Conversely, water scarcity may constrain electricity production, leading to increased vulnerability for megacities electricity production. The WSFE and the water related vulnerability of electricity production reflect two aspects of water-electricity conflict. This varies over time by both the amount and location of electricity production. However, no studies have conducted time-series analysis to evaluate the trends of these two indicators, both in terms of severity and spatial characteristics. Our study focused on evaluating trends in water-electricity conflict both within and beyond megacity administrative boundaries. China's four provincial-level megacities, i.e. Beijing, Tianjin, Shanghai and Chongqing, were chosen as case studies. The results show that water related vulnerability of electricity production in Tianjin, Beijing, Shanghai and Chongqing was diverse and can be classified as extreme, severe, moderate and minor, respectively. Between 2006 and 2016, the WSFE of Tianjin experienced an increasing trend, and its water related vulnerability of electricity production remained at the highest level. Beijing's WSFE has decreased, but its water related vulnerability of electricity production has increased. These differing trends highlight the need for joint reductions to both WSFE and water related vulnerability of electricity production in mitigating water-electricity conflict.

Keywords: electricity conflict; water electricity; water; electricity; electricity production

Journal Title: Journal of environmental management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.