LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic changes of soil microbial community in Pinus sylvestris var. mongolica plantations in the Mu Us Sandy Land.

Photo from wikipedia

Soil microbial communities maintain multiple ecosystem functions in terrestrial ecosystems. The response of soil microbial communities to vegetation restoration in desertification environments is still poorly understood. Therefore, the purpose of… Click to show full abstract

Soil microbial communities maintain multiple ecosystem functions in terrestrial ecosystems. The response of soil microbial communities to vegetation restoration in desertification environments is still poorly understood. Therefore, the purpose of our study was to evaluate the dynamic changes of the soil microbial community during the growth of Pinus sylvestris var. mongolic (P. sylvestris) plantations. We collected soil samples from five P. sylvestris plantations with different stand age. High-throughput sequencing was performed to determine the microbial community structure. The dynamic relationship between soil microbial community and edaphic factors was analyzed using the co-occurrence network, mantel test and partial least squares path modeling. The results showed that the soil microbial alpha diversity and community structure were significantly various among the plantations (P < 0.001). The number of nodes and edges in microbial co-occurrence network gradually decreased and the interrelationships between species became weak with stand age. The Available phosphorus was the most significant factor affecting the structure of bacterial community (R2 = 0.952), while the total phosphorus was the most significant factor affecting the structure of fungal community (R2 = 0.745). However, soil moisture had no significant effect on the microbial community. pH (0.73) and available nitrogen (0.91) had the largest positive total effects on bacterial and fungal community, respectively. Stand age (-0.65) was an indirect factor with the largest negative total effects on the bacterial community. Therefore, we concluded that the soil microbial community was not limited by soil moisture during the natural restoration process of P. sylvestris plantations in the desertification environment and the phosphorus utilization efficiency played a leading role in shaping the soil microbial community.

Keywords: soil microbial; changes soil; microbial community; community; dynamic changes

Journal Title: Journal of environmental management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.