LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficacy and reusability of mixed-phase TiO2-ZnO nanocomposites for the removal of estrogenic effects of 17β-Estradiol and 17α-Ethinylestradiol from water.

Photo from wikipedia

Photocatalytic removal of estrogenic compounds (ECs), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) were assessed using a TiO2-ZnO nanocomposite (NC) over a range of initial EC concentration (Co; 10 mg/L - 0.05 mg/L). Photocatalytic… Click to show full abstract

Photocatalytic removal of estrogenic compounds (ECs), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) were assessed using a TiO2-ZnO nanocomposite (NC) over a range of initial EC concentration (Co; 10 mg/L - 0.05 mg/L). Photocatalytic removal was evaluated under UV and visible irradiation using 10 mg/L NC over 240 min duration. After 240 min, analysis using GCxGC TOF MS revealed 100% transformation at Co ≤ 1 mg/L and ≥25% transformation at Co ≤ 10 mg/L under visible irradiation. Degradation was accompanied by breakdown of the fused ring structure of E2, generating smaller molecular weight by-products which were subsequently mineralized as revealed through TOC removal. With UV photocatalysis, ~30% and ~20% mineralization was attained for E2 and EE2, respectively, for Co of 10 mg/L. Under visible irradiation, ~25% and ~10% mineralization was achieved for E2 and EE2, respectively. Estrogenicity variation was estimated using the E-screen assay conducted with estrogen receptor-positive MCF-7 breast cancer cells. Complete removal of estrogenicity of ECs was confirmed after 240 min of photocatalysis under UV and visible irradiation. FTIR spectroscopy-based analysis of the NC after E2 photocatalysis revealed the presence of sorbed organics. Desorption, followed by GC × GC TOF-MS analysis revealed these organics as by-products of photocatalysis. Desorption of sorbed organics followed by recalcination at 600 °C for 1 h regenerated the active sites on the NC, enabling its efficient reuse for 3 cycles under visible irradiation without loss in activity.

Keywords: irradiation; estradiol ethinylestradiol; visible irradiation; tio2 zno; removal estrogenic

Journal Title: Journal of environmental management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.