LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous denitrification and desulfurization-S0 recovery of wastewater in trickling filters by bioaugmentation intervention based on avoiding collapse critical points.

Photo by onthesearchforpineapples from unsplash

In order to better achieve efficiently simultaneous desulfurization and denitrification/S0 recovery of wastewater, the intervention of sulfur oxidizing bacteria (SOB) and denitrifying bacteria (DNB) was employed to avoid the collapse… Click to show full abstract

In order to better achieve efficiently simultaneous desulfurization and denitrification/S0 recovery of wastewater, the intervention of sulfur oxidizing bacteria (SOB) and denitrifying bacteria (DNB) was employed to avoid the collapse critical points (the dramatically decrease of S/N removal efficiency) under the fluctuated load. With the assistance of DNB and SOB, collapse critical point of trickling filter (TF) was delayed from the P8 (105-114 d) to P10 stage (129-138 d). The treatment efficiency of nitrogen and sulfur was the highest with the S/N ratio of 3:1. The bioaugmentation of DNB and SOB at collapse critical point could effectively regulated collapse situation, which further increased the maximum system utilization/elimination capacity to 4.50 kg S m-3·h-1 and 0.90 kg N m-3·h-1 (increased by 56.89% and 65.56% in comparison to control). High-throughput sequencing analysis indicated that Proteobacteria (average 78.59%) and Bacteroidetes (average 9.30%) were dominant bacteria in the reactor at all stages. As the reaction proceeds, the microbial community was gradually dominated by some functional genera such as Chryseobacterium (average 2.97%), Halothiobacillus (average 22.71%), Rhodanobacter (average 14.02%), Thiobacillus (average 9.01%), Thiomonas (average 16.70%) and Metallibacterium (average 21.63%), which could remove nitrate or sulfide. Both of Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) demonstrated the important role of DNB/SOB during the long-term run in the trickling filters (TFs).

Keywords: trickling filters; desulfurization; collapse; recovery wastewater; collapse critical; critical points

Journal Title: Journal of environmental management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.