LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fuzzy inference optimization algorithms for enhancing the modelling accuracy of wastewater quality parameters.

Photo from wikipedia

To ensure the safe discharge of treated wastewater to the environment, continuous efforts are vital to enhance the modelling accuracy of wastewater treatment plants (WWTPs) through utilizing state-of-art techniques and… Click to show full abstract

To ensure the safe discharge of treated wastewater to the environment, continuous efforts are vital to enhance the modelling accuracy of wastewater treatment plants (WWTPs) through utilizing state-of-art techniques and algorithms. The integration of metaheuristic modern optimization algorithms that are natlurally inspired with the Fussy Inference Systems (FIS) to improve the modelling performance is a promising and mathematically suitable approach. This study integrates four population-based algorithms, namely: Particle swarm optimization (PSO), Genetic algorithm (GA), Hybrid GA-PSO, and Mutating invasive weed optimization (M-IWO) with FIS system. A full-scale WWTP in South Africa (SA) was selected to assess the validity of the proposed algorithms, where six wastewater effluent parameters were modeled, i.e., Alkalinity (ALK), Sulphate (SLP), Phosphate (PHS), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), and Chemical Oxygen Demand (COD). The results from this study showed that the hybrid PSO-GA algorithm outperforms the PSO and GA algorithms when used individually, in modelling all wastewater effluent parameters. PSO performed better for SLP and TKN compared to GA, while the M-IWO algorithm failed to provide an acceptable modelling convergence for all the studied parameters. However, three out of four algorithms applied in this study proven beneficial to be optimized in enhancing the modelling accuracy of wastewater quality parameters.

Keywords: modelling accuracy; optimization algorithms; wastewater; optimization; accuracy wastewater

Journal Title: Journal of environmental management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.