LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular transformation and composition flow of dissolved organic matter in four typical concentrated leachates from the multi-stage membrane system.

Photo from wikipedia

Concentrated leachate (CL), characterized with high content salts and compositional complexity of dissolved organic matter (DOM), is difficult to degrade. Understanding the CL from molecular insight level is the requirement… Click to show full abstract

Concentrated leachate (CL), characterized with high content salts and compositional complexity of dissolved organic matter (DOM), is difficult to degrade. Understanding the CL from molecular insight level is the requirement for further disposal based on their components. Here, typical CL samples were collected from the multi-stage membrane separation process in a large-scale leachate plant, including nanofiltration (NF), primary ultrafiltration (PUF), secondary nanofiltration (SNF), and reverse osmosis (RO). More than 95% of DOM was removed from raw CL, of which about 3/4 flowed into PUFCL and 1/5 flowed into SNFCL. DOM with macro-molecular weight (>500 Da, 30.46%) and highly unsaturated compounds (double-bond equivalents >15) were detected in PUFCL. Nearly half of DOM was CHO-only compounds (42.04%) in SNFCL. PUFCL was abundant in heteroatom species with higher-order oxygen (O ≥ 10), which was coincident with the trend of humic substance distribution (humic substance >1/2). Based on these properties results, advanced oxidation processes, such as ozonation, might be the right process for SNFCL rich in heteroatom species with low-order oxygen (O < 10). Abundant disulfides (S2O2-6 classes, 20.19%) and monovalent salts existed in ROCL, which should be removed from the system. These findings might provide basic information for the treatment of CLs from different membranes.

Keywords: dissolved organic; multi stage; organic matter; stage membrane

Journal Title: Journal of environmental management
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.