LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic production and application of bio-renewable butyl butyrate as jet fuel blend- A review.

Photo from wikipedia

Butyl butyrate (BB) derived from bio-renewable resources is the most promising jet fuel blend. This review highlights essential properties of jet fuel, including calorific value, kinematic viscosity, freezing point, flash… Click to show full abstract

Butyl butyrate (BB) derived from bio-renewable resources is the most promising jet fuel blend. This review highlights essential properties of jet fuel, including calorific value, kinematic viscosity, freezing point, flash point, auto-ignition temperature, and density to compare with different bio-renewable chemicals, which are compatible to be blended with the jet fuel. A detailed discussion follows on the importance of intermediate formation, reaction mechanism, and catalyst properties that are critical towards the production of bio-renewable resource-derived BB. BB is primarily produced via the esterification of butyric acid (BA) in butanol (BuOH) with or without using a catalyst. The corresponding reactions are carried out in both homogeneous and heterogeneous phases, provided it has acidic properties. Thus, a wide range of acidic catalysts such as [HSO3-pmim] HSO4 ionic liquids, heteropolyacid, methanesulfonic acid, Dowex 50 Wx8-400 resins, and sulfonated char causes up to 98%, 97.9%, 93.2%, 95.3%, and 90% of BB yield, respectively are critically reviewed. Moreover, reaction mechanism, product, and by-product formation that primarily dictate the BB yield and selectivity have been comprehensively reviewed. In addition, catalytic and mechanistic insights on BB production from other bio-renewable resources such as butyric anhydride, butyraldehyde, dibutyl ether, and methanol have been discussed in this review.

Keywords: review; jet fuel; bio renewable

Journal Title: Journal of environmental management
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.