LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome profiling reveals candidate flavonoid-related genes during formation of dragon's blood from Dracaena cochinchinensis (Lour.) S.C.Chen under conditions of wounding stress.

Photo by kellysikkema from unsplash

ETHNOPHARMACOLOGICAL RELEVANCE Dragon's Blood (Resina Draconis) is a red resin that has been used in traditional medicine to promote blood circulation, regenerate muscles, reduce swelling and pain, stop bleeding, etc.,… Click to show full abstract

ETHNOPHARMACOLOGICAL RELEVANCE Dragon's Blood (Resina Draconis) is a red resin that has been used in traditional medicine to promote blood circulation, regenerate muscles, reduce swelling and pain, stop bleeding, etc., and its main chemical constituents are flavonoids. Dracaena cochinchinensis (Lour.) S.C.Chen is the only plant defined by the Pharmacopoeia of the People's Republic of China as a source of dragon's blood. AIM OF THE STUDY We aimed to reveal genes involved in the biosynthesis and accumulation of flavonoids of D. cochinchinensis which is under wounding stress by performing a de novo transcriptome analysis. MATERIALS AND METHODS D. cochinchinensis samples were collected for transcriptome sequencing and bioinformatics analysis at 0 days (0 d), 3 days (3 d), 6 days (6 d), and 10 days (10 d) after induction wounding stress, and tissues were microscopically observed after wounding stress. RESULTS A total of 63,244 unigenes were obtained through bioinformatics analysis, and genes associated with the biosynthesis of flavonoids were identified. Through the analysis of DEGs after wounding stress in D. cochinchinensis, based on gene expression consistent with flavonoid accumulation levels, 20 genes in connection with the flavonoid synthesis pathway and 56 genes that may be responsible for flavonoid modification and transport, and also revealed TFs (MYB, bHLH) that may be responsible for flavonoid biosynthesis. Analysis of DEGs between the four periods revealed that after wounding stress, the greatest number of significant DEGs were enriched during the first 3 days, while fewer DEGs were enriched after day 3, which corresponding to only about 1/10 (353/3883) the number of DEGs during the first 3 days. In addition, putative unigenes involved in lignin biosynthesis, such as CSE, HCT, CCR, F5H, and CAD, were significantly down-regulation after D. cochinchinensis wounding stress, but the putative unigenes responsible for flavonoid biosynthesis, such as CHS, CHI, DFR, F3'5'H, F3H, ANR, FLS, and ANS were significantly up-regulation. CONCLUSION We performed de novo transcriptome analysis of D.cochinchinensis under wounding stress, candidate genes and TFs involved in the biosynthesis and accumulation of flavonoids were identified, which is the first report on the transcript variants in flavonoid form accumulation in D. cochinchinensis under wounding stress. According to the results of DEGs analysis, wounding stress attenuated lignin biosynthesis meanwhile promoted flavonoid biosynthesis. In addition, we also compared the transcriptomics of the two different original plants (D.cochinchinensis and D.cambodiana) that form dragon's blood in order to provide further understanding of the formation of dragon's blood.

Keywords: biosynthesis; wounding stress; cochinchinensis; dragon blood

Journal Title: Journal of ethnopharmacology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.