Although Cd is a pollutant of public health relevance, many dietary sources from which it can be absorbed into human tissues remain unknown. While it is well established that the… Click to show full abstract
Although Cd is a pollutant of public health relevance, many dietary sources from which it can be absorbed into human tissues remain unknown. While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands (e.g., humic acids, HAs) and anthropogenic ones (e.g., chelating agents, CAs), the interaction of Cd with both of these ligands is less well understood. To gain insight, a HA-Cd complex was injected on a size-exclusion chromatography (SEC) column coupled on-line with a flame atomic absorption spectrometer (FAAS) using 10mmol/L Tris buffer (pH8.0) as the mobile phase. This approach allowed us to observe the intact HA-Cd complex and the retention behavior of Cd as a function of 2-20μmol/L concentrations of ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) or methylglycinediacetic acid (MGDA) that were added to the mobile phase. An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA. Our results revealed that all CAs abstracted Cd from the HA-Cd complex at concentrations of 5μmol/L, while MGDA and DTPA were effective at 2μmol/L. The bioavailability of some of the on-column formed CA-Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants. In addition, our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety.
               
Click one of the above tabs to view related content.