Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine… Click to show full abstract
Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine lactones (AHLs) in microbial community dynamics in activated sludge. On average, the specific ammonia-oxidising-rate increased from 1.6 to 2.8 mg NH4+-N/g MLSS/hr after treatment with long-chain AHLs for 16 days, and the addition of AHLs to sludge resulted in an increased number of AOA/AOB amoA genes. Significant differences were observed in the AOA communities of control and AHL-treated cultures, but not the AOB community. Furthermore, the dominant functional AOA strains of the Crenarchaeota altered their ecological niche in response to AHL addition. These results provide evidence that AHLs play an important role in mediating AOA/AOB microbial community parameters and demonstrate the potential for application of QS to the regulation of nitrogen compound metabolism in wastewater treatment.
               
Click one of the above tabs to view related content.