LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced nitrate reduction in water by a combined bio-electrochemical system of microbial fuel cells and submerged aquatic plant Ceratophyllum demersum.

Photo from wikipedia

High nitrate (NO3-) loading in water bodies is a crucial factor inducing the eutrophication of lakes. We tried to enhance NO3- reduction in overlying water by coupling sediment microbial fuel… Click to show full abstract

High nitrate (NO3-) loading in water bodies is a crucial factor inducing the eutrophication of lakes. We tried to enhance NO3- reduction in overlying water by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plant Ceratophyllum demersum. A comparative study was conducted by setting four treatments: open-circuit SMFC (Control), closed-circuit SMFC (SMFC-c), open-circuit SMFC with C. demersum (Plant), and closed-circuit SMFC with C. demersum (P-SMFC-c). The electrochemical parameters were documented to illustrate the bio-electrochemical characteristics of SMFC-c and P-SMFC-c. Removal pathways of NO3- in different treatments were studied by adding quantitative 15NO3- to water column. The results showed that the cathodic reaction in SMFC-c was mainly catalyzed by aerobic organisms attached on the cathode, including algae, Pseudomonas, Bacillus, and Albidiferax. The oxygen secreted by plants significantly improved the power generation of SMFC-c. Both electrogenesis and plants enhanced the complete removal of NO3- from the sediment-water system. The complete removal rates of added 15N increased by 17.6% and 10.2% for SMFC-c and plant, respectively, when compared with control at the end of experiment. The electrochemical/heterotrophic and aerobic denitrification on cathodes mainly drove the higher reduction of NO3- in SMFC-c and plant, respectively. The coexistence of electrogenesis and plants further increased the complete removal of NO3- with a rate of 23.1%. The heterotrophic and aerobic denitrifications were simultaneously promoted with a highest abundance of Flavobacterium, Bacillus, Geobacter, Pseudomonas, Rhodobacter, and Arenimonas on the cathode.

Keywords: reduction; plant; water; smfc; demersum; microbial fuel

Journal Title: Journal of environmental sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.