The effects of biosolids, ZnO, and ZnO/biosolids on soil microorganism and the environmental fate of coexisting racemic-quizalofop-ethyl (rac-QE) were investigated. Microbial biomass carbon in native soil, soil/biosolids decreased by 62%… Click to show full abstract
The effects of biosolids, ZnO, and ZnO/biosolids on soil microorganism and the environmental fate of coexisting racemic-quizalofop-ethyl (rac-QE) were investigated. Microbial biomass carbon in native soil, soil/biosolids decreased by 62% and 52% in the presence of ZnO (2‰, weight ratio). The soil bacterial community structure differed significantly among native soil, soil/biosolids, soil/ZnO, and soil/biosolids/ZnO based on a principal co-ordinate analysis (PCoA) of OTUs and one-way ANOVA test of bacterial genera. Chemical transformation caused by ZnO only contributed 4% and 3% of the overall transformation of R-quizalofop-ethyl (R-QE) and S-quizalofop-ethyl (S-QE) in soil/ZnO. The inhibition effect of ZnO on the initial transformation rate of R-QE (rR-QE) and S-QE (rR-QE) in soil only observed when enantiomer concentration was larger than 10 mg/kg. Biosolids embedded with ZnO (biosolids/ZnO) caused a 17%-42% and 22%-38% decrease of rR-QE and rS-QE, although rR-QE and rS-QE increased by 0%-17% and 22%-58% by the addition of biosolids. The results also demonstrated that the effects of biosolids on agricultural soil microorganism and enantioselective transformation of chiral pesticide was altered by the embedded nanoparticles.
               
Click one of the above tabs to view related content.