The residual effect of tobacco biochar (TB ≥ 500°C) mono and co-application with Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ) on the bio-availability of trace elements TE(s) in alkaline soils has… Click to show full abstract
The residual effect of tobacco biochar (TB ≥ 500°C) mono and co-application with Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ) on the bio-availability of trace elements TE(s) in alkaline soils has not been deeply studied yet. A pot study that had earlier been investigated TB mono and blended with CH, CB and NZ on the immobilization of Pb, Cu Cd, and Zn by Chinese cabbage. Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb, Cu Cd, and Zn in mine polluted (M-P), smelter heavily and low polluted (S-HP and S-LP, respectively) soils. The obtained results showed that stabilization of Pb, Cd, Cu and Zn reached 63.84% with TB + CB, 61.19% with TB + CH, 83.31% with TB + CH and 35.27% with TB + CH for M-P soil, 36.46% with TB + NZ, 38.46% with TB + NZ, 19.40% with TB + CH and 62.43% with TB + CH for S-LP soil, 52.94% TB + NZ, 57.65% with TB + NZ, 52.94% with TB + NZ, and 28.44% with TB + CH for S-LP soil. Conversely, TB + CH and TB alone had mobilized Pb and Zn up to 19.29% and 34.96% in M-P soil. The mobility of Zn reached 8.38% with TB + CB and 66.03% with TB for S-HP and S-LP soils. The uptake and accumulation of Pb, Cd, Cu and Zn in shoot and root were reduced in three polluted soils. Overall, the combination of TB along with CH, CB and NZ has been proven to be effective in Pb, Cd, Cu and Zn polluted mine/smelter soils restoration.
               
Click one of the above tabs to view related content.