LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Freeze-dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity.

Photo from wikipedia

Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive… Click to show full abstract

Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive bifunctional biopolymer nanocomposite (HAZ) of humic acid with incorporating aluminum zirconium bimetallic oxide by deep freeze-drying method. Fast nucleation and interconnection of nanoparticles form a highly porous network because of sublimation of frozen HAZ. This duo nanocomposite has efficiently worked for fluoride removal and showed potent antibacterial activity against the Escherichia coli Gram-negative and Staphylococcus aureus Gram-positive bacteria. The X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the hydroxyl groups act as a pivot in the ion exchange process of adsorption, each element of bimetallic oxide primarily takes part in the adsorption mechanism. The maximum adsorption capacity of the adsorbent was 180.62 mg/g at pH seven. Thermodynamic parameters like Gibbs free energy change (ΔG0), entropy (ΔS0), and enthalpy (ΔH0) indicate that the process was endothermic, feasible, and taken place by a chemisorption mechanism. This is the first novel freeze-dried bifunctional biopolymer nanocomposite composed of humic acid natural polymer incorporated with Al-Zr metal oxide, and it exhibited three times higher adsorption efficacy with excellent antibacterial action at a concentration of 5 µg/mL of the nanocomposite.

Keywords: fluoride removal; antibacterial activity; freeze dried; biopolymer nanocomposite; bifunctional biopolymer

Journal Title: Journal of environmental sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.