LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide.

Photo from wikipedia

A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO) sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As) and cadmium (Cd) in water. The maximum As(III)… Click to show full abstract

A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO) sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As) and cadmium (Cd) in water. The maximum As(III) and Cd(II) adsorption capacities of 1% Ca-SFMBO were 156.25 mg/g and 107.53 mg/g respectively in single-adsorption systems. The adsorption of As and Cd by the Ca-SFMBO sorbent was pH-dependent at values from 1 to 7, with an optimal adsorption pH of 6. In the dual-adsorbate system, the presence of Cd(II) at low concentrations enhanced As(III) adsorption by 33.3%, while the adsorption of As(III) was inhibited with the increase of Cd(II) concentration. Moreover, the addition of As(III) increased the adsorption capacity for Cd(II) up to two-fold. Through analysis by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR), it was inferred that the mechanism for the co-adsorption of Cd(II) and As(III) included both competitive and synergistic effects, which resulted from the formation of ternary complexes. The results indicate that the Ca-SFMBO material developed here could be used for the simultaneous removal of As(III) and Cd(II) from contaminated water.

Keywords: adsorption; starch stabilized; water; calcium modified; spectroscopy; modified starch

Journal Title: Journal of environmental sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.