LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of leaching characteristic and kinetic study of lithium from lithium aluminum silicate glass-ceramics by NaOH.

Photo from wikipedia

The behavior and mechanism of Li leaching from lithium aluminum silicate glass-ceramics which can be used as a secondary source of Li using aqueous NaOH solution was investigated. The Li… Click to show full abstract

The behavior and mechanism of Li leaching from lithium aluminum silicate glass-ceramics which can be used as a secondary source of Li using aqueous NaOH solution was investigated. The Li leaching efficiency is increased with increasing concentration of NaOH, specific surface area, and reaction temperature. When leached under optimum conditions, 2 mol/L NaOH, 53 μm particle undersize, 1:10 solid/liquid ratio, 250 r/min stirring speed, 100°C reaction temperature, 12 hr, the Li leaching efficiency was approximately 70%. However, when the leaching experiment was performed for 48 hr, the concentration of Li+ ions contained in the leach liquor decreased from 1160 to 236 mg/L. To investigate the origin of this phenomenon, the obtained leach residue was analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. These analyses show that zeolite was formed around the lithium aluminum silicate glass-ceramics, which affected the leaching of by adsorbing Li+ ions. In addition, using the shrinking-core model and the Arrhenius equation, the leaching reaction with NaOH was found to depends on the chemical reaction of the two reactants, with a higher than 41.84 kJ/mol of the activation energy.

Keywords: lithium aluminum; silicate glass; aluminum silicate; glass ceramics; lithium

Journal Title: Journal of environmental sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.