Abstract A serial of multi-walled carbon nanotubes (MWCNTs) reinforced geopolymer composites were prepared, and then heated at elevated temperature to fabricate MWCNTs/leucite composites by in situ transformation. Effects of high-temperature… Click to show full abstract
Abstract A serial of multi-walled carbon nanotubes (MWCNTs) reinforced geopolymer composites were prepared, and then heated at elevated temperature to fabricate MWCNTs/leucite composites by in situ transformation. Effects of high-temperature treatment on the microstructure evolution and mechanical performance of the composites were investigated. The results indicated that the introduction of MWCNTs could improve the mechanical properties of geopolymer, and the optimum content was 3 wt%. The mechanical performance declined instead with the further increase in MWCNTs content up to 5 wt%, which could be attributed to the agglomeration of MWCNTs. Significant improvements in mechanical properties were achieved after the composites were treated in a temperature range from 950 °C to 1200 °C relative to their original state before heat treatment. The significant improvements could be described to the matrix densification, and leucite formation as well as the proper interface bonding state between carbon nanotube and leucite matrix.
               
Click one of the above tabs to view related content.