Abstract In this paper, we demonstrate that persistent luminescent bodies can be obtained by carefully choosing the sintering temperatures and duration. A borosilicate and a phosphate glasses were sintered into… Click to show full abstract
Abstract In this paper, we demonstrate that persistent luminescent bodies can be obtained by carefully choosing the sintering temperatures and duration. A borosilicate and a phosphate glasses were sintered into bodies with persistent luminescent (PeL) SrAl 2 O 4 :Eu 2+ ,Dy 3+ microparticles which have a green emission up to tens of hours after ceasing irradiation. When sintered at high temperature for a short time or at lower temperature for a longer time, a decrease in the PeL from the bodies was observed and was related to the glasses crystallization. A decrease in the PeL from the bodies was also observed after immersion in simulated body fluid and was related to the mineralization of the sintered bodies. Therefore, we clearly show that by tracking the changes in the PeL overtime, these PeL bodies have a real potential application as biophotonic sensors to track dissolution and mineralization of the implant in the body.
               
Click one of the above tabs to view related content.