LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protecting nuclear graphite from liquid fluoride salt and oxidation by SiC coating derived from polycarbosilane

Photo from wikipedia

Abstract Modification process has been conducted on commercial nuclear graphite IG-110 (Toyo Tanso Co., Ltd., Japan) by impregnation and pyrolysis of polycarbosilane (PCS) solution for getting the modified IG-110 (M-IG-110)… Click to show full abstract

Abstract Modification process has been conducted on commercial nuclear graphite IG-110 (Toyo Tanso Co., Ltd., Japan) by impregnation and pyrolysis of polycarbosilane (PCS) solution for getting the modified IG-110 (M-IG-110) coated by dense SiC coating for molten salt reactor. The microstructure and properties of graphite were systematically investigated and compared before and after the modification process. Results indicated that the M-IG-110 possessed of more excellent integrated properties including molten salt barrier property and oxidation resistance than bare IG-110 due to the filling effect of SiC particles in the pores of M-IG-110 and dense SiC coating adhering to the surface of M-IG-110. The fluoride salt infiltration amount of M-IG-110 under 5 atm was only 1.1 wt%, which was much less than 14.9 wt% for bare IG-110. The SiC coating derived from PCS exhibited remarkable compatibility with graphite substrate under high temperature and gave rise to excellent oxidation resistance of M-IG-110.

Keywords: nuclear graphite; oxidation; salt; sic coating; coating derived; fluoride salt

Journal Title: Journal of The European Ceramic Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.