Abstract Dense K0.5Bi0.5TiO3 (KBT) lead-free ceramics were prepared by conventional solid reaction route. Their temperature behavior (up to 600 °C) was investigated by X-ray diffraction, DSC, dielectric spectroscopy and electric field-polarization… Click to show full abstract
Abstract Dense K0.5Bi0.5TiO3 (KBT) lead-free ceramics were prepared by conventional solid reaction route. Their temperature behavior (up to 600 °C) was investigated by X-ray diffraction, DSC, dielectric spectroscopy and electric field-polarization technique. The first temperature dependent Raman scattering studies were also performed. X-ray and Raman scattering results show that samples exhibit a single perovskite structure with cubic symmetry at temperatures higher than approximately 400 °C and with coexistence of the cubic and tetragonal phases below this temperature. Two structural phase transitions between tetragonal phases in temperature range 200–225 °C and between tetragonal and cubic ones near 400 °C are observed. The content of the tetragonal phase increases with decreasing temperature and at room temperature it reaches more than 70%. Temperature- dependent P-E loops and pyroelectric data revealed a polar behavior in KBT up to about 400 °C, which means that the intermediate phase (∼270–380 °C) is rather ferroelectric than antiferroelectric.
               
Click one of the above tabs to view related content.