LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of SiBCN content on the dielectric and EMW absorbing properties of SiBCN-Si3N4 composite ceramics

Photo by briangarrityphoto from unsplash

Abstract Siliconboron carbonitride ceramics (SiBCN) were introduced into porous Si3N4 substrates via low pressure chemical vapor deposition and infiltration from SiCl3CH3-NH3-BCl3-H2-Ar system. To improve the electromagnetic wave(EMW) absorbing properties, the… Click to show full abstract

Abstract Siliconboron carbonitride ceramics (SiBCN) were introduced into porous Si3N4 substrates via low pressure chemical vapor deposition and infiltration from SiCl3CH3-NH3-BCl3-H2-Ar system. To improve the electromagnetic wave(EMW) absorbing properties, the molar ratio, nCH3SiCl3/(nNH3 + nBCl3), was increased based on thermodynamics analysis. The results show that nanosized silicon carbide crystals and free carbon dispersed uniformly in the amorphous SiBCN phase, resulting in suitable dielectric properties and improved absorption capabilities of SiBCN-Si3N4 ceramics. Additionally, with increasing SiBCN ceramics loading, the amount of nanocrystals and interface between nanocrystals and amorphous SiBCN phase increased, leading to enhanced polarization and dielectric loss of the composite ceramics. When SiBCN content was up to 3.64 wt%, the electromagnetic reflection coefficient (RC) of SiBCN-Si3N4 composite ceramics reached −40 dB (>99.97% absorbing) with the effective electromagnetic absorbing bandwidth of 3.64 GHz in the X-band. This study makes it possible to fabricate SiBCN-based composite materials with excellent EMW absorbing properties at a low temperature.

Keywords: absorbing properties; sibcn si3n4; emw absorbing; composite ceramics; sibcn; sibcn content

Journal Title: Journal of The European Ceramic Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.