Abstract Dense ceramics of MnSO4 composition have been successfully densified at 400 °C in only 5 min under a uniaxial pressure of 400 MPa, using Spark Plasma Sintering technique. Since the stable form… Click to show full abstract
Abstract Dense ceramics of MnSO4 composition have been successfully densified at 400 °C in only 5 min under a uniaxial pressure of 400 MPa, using Spark Plasma Sintering technique. Since the stable form of MnSO4 in ambient atmosphere is its hydrate MnSO4·H2O, crystallizing in a different space group, dehydration is required to reach a purely anhydrous phase. In situ dehydration during Spark Plasma Sintering allows to lower both sintering temperature and time. Applied pressure strongly influences dehydration step and therefore is a key parameter to tune densification, so far as to obtain a dense MnSO4·H2O ceramic. The presence of a reversible phase transition to a β-MnSO4 high temperature form seems to influence the dehydration temperature under pressure, and likely drives the sintering mechanisms. The high densification obtained, beyond 95% of theoretical density, added to the preservation of the structural and physical properties of MnSO4 after sintering allowed to perform reliable and reproducible measurements showing a dielectric anomaly associated to the magnetic transition, and the hysteretic behaviour of capacitance versus magnetic field, which is a clue for an intrinsic magnetoelectric coupling in MnSO4.
               
Click one of the above tabs to view related content.