Abstract Research for high-performance lead-free piezoelectric materials has become an urgent issue from the environmental concern. Very limited attempts on two-step sintering had been made so far. In this study,… Click to show full abstract
Abstract Research for high-performance lead-free piezoelectric materials has become an urgent issue from the environmental concern. Very limited attempts on two-step sintering had been made so far. In this study, (K0.45Na0.55)0.98Li0.02Nb0.76Ta0.18Sb0.06O3 ceramics were prepared by both conventional sintering and two-step sintering. Piezoelectric properties, microstructure and domain structure were found to change significantly with sintering methods and sintering conditions. Two-step sintering was performed in the way that temperature is first quickly raised to 1180 °C, kept for 1 min, then immediately cooled down to 1120 °C and maintained for a desired time length. The effects of dwelling time on piezoelectric performance and microstructure as well as domain structure were investigated. High piezoelectric properties of d33 = 455 pC/N, kp = 0.54 and k33 = 0.67 were obtained in a ceramic prepared under the dwelling time of 20 h. This ceramic also possesses a very good piezoelectric thermal-ageing stability over −50 °C–150 °C. Further investigation reveals that this ceramic has a quite uniform grain-size distribution with the average grain size of about 12 μm in microstructure and shows domain patterns of simple parallel stripes with a hierarchical nanodomain structure appearing inside some of broad stripes. The observed excellent piezoelectric performance is considered to associate closely with the unique domain structure.
               
Click one of the above tabs to view related content.