LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the role of the pore morphology on the electrical conductivity of porous yttria-stabilized zirconia

Photo from wikipedia

Abstract Yttria Stabilized Zirconia ceramics with well-controlled porosity, pore size and shape were prepared using well-calibrated poly-methyl-methacrylate (PMMA) micro-beads (MB) as a pore-forming agent. The microstructure was observed by Scanning… Click to show full abstract

Abstract Yttria Stabilized Zirconia ceramics with well-controlled porosity, pore size and shape were prepared using well-calibrated poly-methyl-methacrylate (PMMA) micro-beads (MB) as a pore-forming agent. The microstructure was observed by Scanning Electron Microscopy. Impedance spectroscopy was used to evaluate the effect of pore morphology (pore size, pore size distribution, pore shape and interconnectivity) on the electrical properties of YSZ ceramics. Archie's law based analyzes to express the dependence of conductivity on porosity have shown that Archie's law is independent of pore size for a pore diameter of between 1 and 7 μm. The Bruggeman model could be used to predict the bulk conductivity if the porosity was less than 25%, thus showing that the impedance response included the effect of sinuousness and constriction induced by pores. Therefore, the tortuosity factor calculated from the bulk conductivity was higher than that predicted by the Bruggeman model for porosities greater than 25% and spherical pores wide (>20 μm). Another point relates to the comparison between tortuosity factors obtained for pore samples fabricated with pore-forming PMMA or by sub-sintering.

Keywords: yttria stabilized; pore morphology; stabilized zirconia; pore size; conductivity; pore

Journal Title: Journal of the European Ceramic Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.