LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics

Photo from wikipedia

Abstract CaMnO3–based materials represent a promising family of n-type oxide thermoelectrics. The objective of the present work is assessing the impacts on relevant structural, microstructural and thermoelectric properties of manganites… Click to show full abstract

Abstract CaMnO3–based materials represent a promising family of n-type oxide thermoelectrics. The objective of the present work is assessing the impacts on relevant structural, microstructural and thermoelectric properties of manganites when they are processed by the laser floating zone technique. For this purpose, donor-doped Ca0.9La0.1MnO3, CaMn0.95Nb0.05O3 and undoped CaMnO3 were used. Different growth conditions have been evaluated through combined studies of structural, microstructural, and thermoelectric characteristics. Despite the presence of secondary phases, electrical resistivity is among the best reported in the literature (9 mΩ.cm at 800 °C for La-doped materials grown at 200 mm/h). Essentially high absolute Seebeck coefficient of 320 μV/K at 800 °C was observed for undoped samples grown at 10 mm/h. Power factor is significantly affected by the growth conditions, reaching the highest values when using the lowest pulling rates. Exceptionally high PF (0.39 mW/K2m at 800 °C) was obtained for undoped CaMnO3 samples grown at 10 mm/h.

Keywords: growth; growth rate; camno3; effects thermoelectric; rate effects; camno3 based

Journal Title: Journal of the European Ceramic Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.