LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics

ABSTRACT Different manganese oxides-doping effects were compared in piezoceramic BiFeO3-BaTiO3 system. 0.67Bi1.05(Fe0.99Mnx0.01)O3-0.33BaTiO3 (valence state x = 4+, 3+, and 2+) ceramics were prepared via a solid-state reaction process followed by… Click to show full abstract

ABSTRACT Different manganese oxides-doping effects were compared in piezoceramic BiFeO3-BaTiO3 system. 0.67Bi1.05(Fe0.99Mnx0.01)O3-0.33BaTiO3 (valence state x = 4+, 3+, and 2+) ceramics were prepared via a solid-state reaction process followed by furnace-cooling (FC) or water-quenching (WQ) process. For the FC ceramics, the direct piezoelectric sensor coefficient (d33) was almost independent of valence state of doped Mn, while d33 depended on the fraction of Fe3+/Fe2+ in WQ ceramics. The d33 value was highest for the donor Mn4+-doped ceramic, among the FC ceramics, with 175 pC/N. However, acceptor-doping with Mn2+ prevented the transition of Fe ion valence state from 3+ to 2+ in the WQ ceramics, the Mn2+-doped WQ ceramic showed the largest d33 of 313 pC/N and converse piezoelectric actuator coefficient, d33* of 352 pm/V, with high Curie phase transition temperature (482 °C).

Keywords: bifeo3 batio3; valence state; mn2; manganese oxides

Journal Title: Journal of The European Ceramic Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.