Abstract In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were… Click to show full abstract
Abstract In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were investigated to evaluate the potential as high energy storage capacitors. Relaxor ferroelectric Bi0.5Na0.5TiO3 was introduced to stabilize the antiferroelectric state through modulating the M1-M2 phase transition. Enhanced energy storage performance was achieved for the 3 mol% Bi0.5Na0.5TiO3 doped AgNbO3 ceramic with high recoverable energy density of 3.4 J/cm3 and energy efficiency of 62% under an applied field of 220 kV/cm. The improved energy storage performance can be attributed to the stabilized antiferroelectricity and decreased electrical hysteresis ΔE. In addition, the ceramics also displayed excellent thermal stability with low energy density variation (
               
Click one of the above tabs to view related content.