LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low temperature sintering and characterization of La2O3-B2O3-CaO glass-ceramic/LaBO3 composites for LTCC application

Photo by fabiooulucas from unsplash

Abstract An interesting attempt to develop low temperature sintering glass-ceramic/ceramic composite based on La2O3-B2O3-CaO (LBC) glass-ceramic and LaBO3 ceramic, which was reported to be the main crystalline phase precipitated from… Click to show full abstract

Abstract An interesting attempt to develop low temperature sintering glass-ceramic/ceramic composite based on La2O3-B2O3-CaO (LBC) glass-ceramic and LaBO3 ceramic, which was reported to be the main crystalline phase precipitated from La2O3-B2O3-based glass-ceramics, has been taken. The sintering behavior, phase evolution, microstructures and dielectric properties of LBC/LaBO3 composites have been studied. The densification of LBC/LaBO3 composite is achieved by partially reactive sintering. The LaBO3 filler is directly involved in the sintering process of glass/ceramic composite as additional liquid phase provider at high sintering temperature, and it will suppress the formation of other crystalline phases so that the produced LBC/LaBO3 composites exhibit unusual simple phase structures, which is beneficial to regulate the performance of composites. LBC/LaBO3 composite with 50 wt% LaBO3 sintered at 950 oC for 2 h has a dielectric constant er = 10.12, a dielectric loss tanδ = 1.82 × 10―3, a Q × f = 9312 GHz (at 16.95 GHz), and shows good chemical compatibility while co-firing with Ag electrode. This indicates that LBC glass/LaBO3 ceramic composites have a potential to meet the requirements of microwave LTCC applications.

Keywords: la2o3 b2o3; labo3; temperature; glass; labo3 composites; glass ceramic

Journal Title: Journal of The European Ceramic Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.