LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy storage property of (Pb0.97La0.02)(Zr0.5Sn0.4Ti0.1)O3-(Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics: Effects of antiferroelectric-relaxor transition and improved breakdown strength

Photo from wikipedia

Abstract (1-x)(Pb0.97La0.02)(Zr0.5Sn0.4Ti0.1)O3-x(Na0.5Bi0.5)0.94Ba0.06TiO3 (x = 0 ∼ 0.4) ceramics have been prepared and investigated. The ceramics consist of perovskite solid solution matrix and precipitated, isolated SnO2 particle, resulting in 0–3 type… Click to show full abstract

Abstract (1-x)(Pb0.97La0.02)(Zr0.5Sn0.4Ti0.1)O3-x(Na0.5Bi0.5)0.94Ba0.06TiO3 (x = 0 ∼ 0.4) ceramics have been prepared and investigated. The ceramics consist of perovskite solid solution matrix and precipitated, isolated SnO2 particle, resulting in 0–3 type composite structure. With increasing x value, the room temperature crystal structure of perovskite solid solution transforms from tetragonal to pseudocubic, therefore, the electrical property evaluates form robust antiferroelectric at x = 0, metastable antiferroelectric at x = 0.1, and then relaxor ferroelectric at x > 0.1. Moreover, the breakdown strength is enhanced due to the composite structure and reaches maximum value of 190 kV/cm at x = 0.2. Both the phase transition and enhanced breakdown strength are helpful to improve energy storage property, the x = 0.2 ceramic shows largest recoverable energy density wrec of 1.84 J/cm3, discharge efficiency η of 86.6 %. Especially, both wrec and η illustrates significantly improved thermal stability within 25−125 °C.

Keywords: energy; 97la0 zr0; breakdown strength; pb0 97la0; property

Journal Title: Journal of The European Ceramic Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.