Abstract The electromagnetic properties and EMI shielding effectiveness of Cf/mullite composites via the spark plasma sintering were intensively investigated in the gigahertz range (8.2–12.4 GHz). Experimental results have revealed excellent… Click to show full abstract
Abstract The electromagnetic properties and EMI shielding effectiveness of Cf/mullite composites via the spark plasma sintering were intensively investigated in the gigahertz range (8.2–12.4 GHz). Experimental results have revealed excellent electromagnetic properties and a high value of EMI shielding effectiveness (nearly 40 dB) for Cf/mullite composites with 1.65 vol% carbon fillers at thickness of 2 mm. We quantitatively characterize the contributions of microstructural features to overall EMI shielding effectiveness using a micromechanics-based homogenization model. The EMI shielding effectiveness enhances with respect to the Cf volume concentration before the threshold. The increasing trend of EMI shielding effectiveness with respect to AC (alternating current) frequency can be attributed to enhanced conductivity at high gigahertz range. It is demonstrated that filler and frequency dependent interface effects are essential to obtain excellent electromagnetic properties of Cf/mullite composite. The present research can provide guidances for the design of ceramic-based composites applied in high-temperature EMI shielding devices.
               
Click one of the above tabs to view related content.