LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling of elastic modulus of CaZrO3-MgO composites using isotropic elastic and anisotropic models

Abstract Starting from synthetic raw materials (CaZrO3 and MgO), microstructural and mechanical properties were optimised in order to obtain dense multiphasic ceramic, then finite element method (FEM) of an equimolar… Click to show full abstract

Abstract Starting from synthetic raw materials (CaZrO3 and MgO), microstructural and mechanical properties were optimised in order to obtain dense multiphasic ceramic, then finite element method (FEM) of an equimolar (1:1) CaZrO3-MgO composite was performed in order to obtain the effective elastic modulus. Composite presents two main phases of orthorhombic CaZrO3 (81.5 wt.%) and cubic MgO (18.5 wt.%); For 1500 °C, relative density of 99.9%, characteristic strength of 168 MPa, hardness of 7.8 MPa and toughness of 2.5 MPa.m1/2 were obtained. FEM simulation was performed using two representative volume elements (RVE’s) with edge lengths of 14 μm (933 grains) and 17 μm (1670 grains), using isotropic elastic model, and anisotropic on specific set of crystallographic planes. The results of FEM using isotropic approach for the two RVE’s are perfectly aligned with the experimental (245 GPa), while the anisotropic model shows a difference of 6.5%.

Keywords: isotropic elastic; using isotropic; elastic modulus; anisotropic; cazro3 mgo

Journal Title: Journal of The European Ceramic Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.