LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chromaticity-tunable remote LuYAG: Ce phosphor-in-glass film on regular textured glass substrate for white light emitting diodes

Photo from wikipedia

Abstract All inorganic remote phosphor-in-glass film exhibits excellent properties in high power white light-emitting-diodes (WLEDs) thanks to their easy fabrication and thermal stability. Herein, fabrication of (Lu, Y)3Al5O12: Ce3+ (LuYAG:… Click to show full abstract

Abstract All inorganic remote phosphor-in-glass film exhibits excellent properties in high power white light-emitting-diodes (WLEDs) thanks to their easy fabrication and thermal stability. Herein, fabrication of (Lu, Y)3Al5O12: Ce3+ (LuYAG: Ce)phosphors embedded in borosilicate glass film by the conventional solid state reaction and spin coating technology has been reported. The introduction of Y3+ ions reduces the difference of relative growth rate along some directions in growth of LuYAG microparticles, yielding a finer grain with smooth edges. By adjusting the molar concentration of Y3+ ions in LuAG phosphor, a series of tunable broadband emission from green to yellow region is observed and maintains excellent thermal stability. Meanwhile, the decay curves of samples with different Y3+ are almost same. SEM images show that phosphor particles are homogenously distributed within the glass matrix and keep their original morphology, suggesting the phosphor-in-glass films were synthesized as expected. Finally, a simple WLEDs based on the films was constructed using the commercial blue chip. The correlated color temperature ranging from 4853K to 4627K and high color rendering index from 81.4–79.7 were obtained. Upon the different driving current, the chromaticity coordinates of as-fabricated film exhibit good light color stability. These results bring an inspiring insight to tune the luminescent performance for remote WLEDs.

Keywords: glass film; glass; phosphor; white light; phosphor glass

Journal Title: Journal of The European Ceramic Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.