LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring multiferroicity in BiFeO3 - NaNbO3 thermistor electroceramics

Photo by kalenemsley from unsplash

Abstract The BiFeO3 –NaNbO3 electroceramics, synthesized by the ceramic method, are studied aiming to obtain materials with a well-defined thermistor response coexisting with a relevant magnetic response. XRD data and… Click to show full abstract

Abstract The BiFeO3 –NaNbO3 electroceramics, synthesized by the ceramic method, are studied aiming to obtain materials with a well-defined thermistor response coexisting with a relevant magnetic response. XRD data and Raman analysis reveal a structural transition as a function of composition. Compositional features explored from ICP, XPS and EDS measurements, suggest compositional heterogeneity leading to a cluster-type scenario implying NNO-rich and BFO-rich regions in the samples. Impedance spectroscopy data reveal the development of a PTCR thermistor response for x ≥ 0.5 near room temperature. The x = 0.9 ceramic shows resistivity changes of about six orders of magnitude in the first thermal cycle and maximum permittivity values of ∼ 105, much higher than those previously reported for BFO-doped ceramics. Magnetization data are interpreted in terms of the stabilization of superparamagnetic clusters. The response displayed by the x = 0.9 ceramic makes it a promising multifunctional material for device applications.

Keywords: response; multiferroicity bifeo3; exploring multiferroicity; bifeo3 nanbo3; thermistor

Journal Title: Journal of The European Ceramic Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.