Abstract In the first part of the paper we investigate some geometric features of Moser–Trudinger inequalities on complete non-compact Riemannian manifolds. By exploring rearrangement arguments, isoperimetric estimates, and gluing local… Click to show full abstract
Abstract In the first part of the paper we investigate some geometric features of Moser–Trudinger inequalities on complete non-compact Riemannian manifolds. By exploring rearrangement arguments, isoperimetric estimates, and gluing local uniform estimates via Gromov's covering lemma, we provide a Coulhon, Saloff-Coste and Varopoulos type characterization concerning the validity of Moser–Trudinger inequalities on complete non-compact n-dimensional Riemannian manifolds ( n ≥ 2 ) with Ricci curvature bounded from below. Some sharp consequences are also presented both for non-negatively and non-positively curved Riemannian manifolds, respectively. In the second part, by combining variational arguments and a Lions type symmetrization-compactness principle, we guarantee the existence of a non-zero isometry-invariant solution for an elliptic problem involving the n-Laplace–Beltrami operator and a critical nonlinearity on n-dimensional homogeneous Hadamard manifolds. Our results complement in several directions those of Y. Yang [J. Funct. Anal., 2012].
               
Click one of the above tabs to view related content.