We study the uniform resolvent estimates for the Schrodinger operator with a Hardy-type singular potential. Let $\mathcal{L}_V=-\Delta+V(x)$ where $\Delta$ is the usual Laplacian on $\mathbb{R}^n$ and $V(x)=V_0(\theta) r^{-2}$ where $r=|x|,… Click to show full abstract
We study the uniform resolvent estimates for the Schrodinger operator with a Hardy-type singular potential. Let $\mathcal{L}_V=-\Delta+V(x)$ where $\Delta$ is the usual Laplacian on $\mathbb{R}^n$ and $V(x)=V_0(\theta) r^{-2}$ where $r=|x|, \theta=x/|x|$ and $V_0(\theta)\in\mathcal{C}^1(\mathbb{S}^{n-1})$ is a real function such that the operator $-\Delta_\theta+V_0(\theta)+(n-2)^2/4$ is a strictly positive operator on $L^2(\mathbb{S}^{n-1})$. We prove some new uniform weighted resolvent estimates and also obtain some uniform Sobolev estimates associated with the operator $\mathcal{L}_V$.
               
Click one of the above tabs to view related content.