LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Partly clustering solutions of nonlinear Schrödinger systems with mixed interactions

Photo from wikipedia

Abstract In this paper, we prove a partly clustering phenomenon for nonlinear Schrodinger systems with large mixed couplings of attractive and repulsive forces, which arise from the models in Bose-Einstein… Click to show full abstract

Abstract In this paper, we prove a partly clustering phenomenon for nonlinear Schrodinger systems with large mixed couplings of attractive and repulsive forces, which arise from the models in Bose-Einstein condensates and nonlinear optics. More precisely, we consider a system with three components where the interaction between the first two components and the third component is repulsive, and the interaction between the first two components is attractive. Recent studies [10] , [11] , [12] , [13] in this case show that for large interaction forces, the first two components are localized in a region with a small energy and the third component is close to a solution of a single equation. Especially, the results in the works [12] , [13] say that the region of localization for a (locally) least energy vector solution on a ball in the class of radially symmetric functions is the origin or the whole boundary depending on the space dimension 1 ≤ n ≤ 3 . In this paper we construct a new type of solutions with a region of localization different from the origin or the whole boundary. In fact, we show that there exist radially symmetric positive vector solutions with clustering multi-bumps for the first two components near the maximum point of r n − 1 U 3 , where U is the limit of the third component and the maximum point is the only critical point different from the origin and the boundary.

Keywords: partly clustering; third component; two components; solutions nonlinear; first two; clustering solutions

Journal Title: Journal of Functional Analysis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.