LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tetrahydrocurcumin attenuates phase I metabolizing enzyme-triggered oxidative stress in mice fed a high-fat and high-fructose diet

Photo by sammywilliams from unsplash

Abstract Excessive consumption of a fat- and/or fructose-rich hypercaloric diet leads to metabolic syndromes. This study aimed to investigate the hepatoprotective effects of tetrahydrocurcumin (THC), an anti-oxidant metabolite of curcumin,… Click to show full abstract

Abstract Excessive consumption of a fat- and/or fructose-rich hypercaloric diet leads to metabolic syndromes. This study aimed to investigate the hepatoprotective effects of tetrahydrocurcumin (THC), an anti-oxidant metabolite of curcumin, in a hypercaloric diet-induced oxidative stress mouse model. Male ICR mice were fed a high-fat and high-fructose diet (HFFD) containing hydrogenated soybean oil (44.1% saturated fat and 0.2% trans-fatty acids) and a 20% fructose solution for 8 weeks. The HFFD induced hepatic injury through cytochrome P450 (CYP450)-induced oxidative stress, increased glucose tolerance, and increased CYP450 expression. THC attenuated oxidative stress in the HFFD mice by decreasing glucose tolerance, alanine aminotransferase and aspartate aminotransferase levels. In addition, THC suppressed HFFD-induced NADPH-CYP450 reductase activity, restored expression of anti-oxidative stress response related genes, and reduced ROS production by CYP2E1 and CYP3A11. Thus, THC is an excellent candidate for protection against HFFD-induced liver injury related to phase I biotransformation and anti-oxidation pathway.

Keywords: fed high; hffd; stress; oxidative stress; mice fed

Journal Title: Journal of Functional Foods
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.