LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorylation of porcine bone collagen peptide to improve its calcium chelating capacity and its effect on promoting the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells

Photo from wikipedia

Abstract In this study, porcine bone collagen peptide (CP) was phosphorylated with sodium tripoly phosphate (STP) in order to improve its calcium binding capacity and osteogenic activity. Firstly, the phosphorylation… Click to show full abstract

Abstract In this study, porcine bone collagen peptide (CP) was phosphorylated with sodium tripoly phosphate (STP) in order to improve its calcium binding capacity and osteogenic activity. Firstly, the phosphorylation process were optimized by an orthogonal experiment. Then, the effects of CP, phosphorylated CP (PCP), CP-calcium chelate (CP-Ca) and PCP-Ca on proliferation, differentiation and mineralization of MC3T3-E1 cells were investigated. The results showed that all of the CP, PCP, CP-Ca and PCP-Ca could enhance the proliferation, differentiation and mineralization of MC3T3-E1 cells by increasing the mRNA expression levels of alkaline phosphatase (ALP), Runt-related transcription factor-2 (Runx2), osteocalcin (OCN), osteopontin (OPN) and collagen type I (Col I), as well as the protein expression levels of Runx2 and β-Catenin. Especially, PCP-Ca had the greatest and significant effect on mineralization of MC3T3-E1 cells (P

Keywords: collagen; mineralization; differentiation mineralization; proliferation differentiation; mc3t3 cells

Journal Title: Journal of Functional Foods
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.