LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constructive interference in a network of elastically-bounded flapping plates

Photo from wikipedia

Abstract Aeroelastic phenomena are gaining significant attention from the perspective of energy harvesting (EH) with promising applications in supplying low-power remote sensors. Besides the development of individual EH devices, further… Click to show full abstract

Abstract Aeroelastic phenomena are gaining significant attention from the perspective of energy harvesting (EH) with promising applications in supplying low-power remote sensors. Besides the development of individual EH devices, further issues are posed when considering multiple objects for realizing arrays of devices and magnifying the extracted power. Due to nonlinear mutual interactions, the resulting dynamics is generally different from that of single devices and the setup optimization turns out to be nontrivial. In this work, we investigate the problem focusing on a flutter-based EH system consisting of a rigid plate anchored by elastic elements and invested by a uniform laminar flow, undergoing regular limit-cycle oscillations and flapping motions of finite amplitude. We consider a simplified, yet general, physical model and employ three-dimensional direct numerical simulations based on a finite-difference Navier–Stokes solver combined with a moving-least-squares immersed boundary method. Focusing on main kinematic and performance-related quantities, we first report on the dynamics of the single device and then on multiple devices, considering different arrangements (i.e.: in-line, staggered and side-by-side). A parametric exploration is performed by varying the mutual distance between the devices and insights are provided. For the in-line arrangement, a recovery in performance for downstream devices is achieved by tuning their elasticity. Moreover, cooperative effects in the side-by-side arrangement are found to be substantially beneficial in terms of resulting power, with increases (i.e. constructive interference) up to 100% with respect to the single-device configuration. In order to confirm this numerical evidence, complementary results from wind-tunnel experiments are presented. Finally, we describe the system behaviour when increasing further the number of devices, outlining the ultimate goal of developing a high-performance EH network of numerous aeroelastic energy harvesters.

Keywords: constructive interference; network elastically; interference; elastically bounded; interference network

Journal Title: Journal of Fluids and Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.