LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The synergistic effects of quercetin-containing 3D-printed mesoporous calcium silicate/calcium sulfate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis in mesenchymal stem cells.

Photo from wikipedia

BACKGROUND/PURPOSE Several growth factors were proven to be effective in the treatment of bone defects and fractures and thus have great potential for bone regeneration applications. However, it needs low-temperature… Click to show full abstract

BACKGROUND/PURPOSE Several growth factors were proven to be effective in the treatment of bone defects and fractures and thus have great potential for bone regeneration applications. However, it needs low-temperature storage and transportation. This study aimed to investigate the herbal extract quercetin, a candidate for natural flavonoid compounds that have been reported to be involved in regulating inflammation and improving immunity and health. METHODS In this study, we prepared quercetin (Q)/mesoporous calcium silicate calcium sulfate (MSCS)/polycaprolactone (PCL) composite scaffolds using the 3D printing technique, where we immersed it in simulated body fluid (SBF) solution and soaked it for up to 60 days. The characteristics of quercetin scaffold were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), immunofluorescence, and Alizarin Red S staining. RESULTS We found precipitation of apatite on the surface of the scaffold. The in vitro results for cell proliferation, cytotoxicity, and immunofluorescence staining revealed that Wharton's jelly mesenchymal stem cells (WJMSCs) with a 2% quercetin (Q2) scaffold were significantly higher in number than with 1% quercetin (Q1) and MSCS scaffolds. The phalloidin staining of cell skeletons on the surface of Q2 revealed powerful cell-to-cell adhesion and high expression of green fluorescence. The Q2 scaffold also had the highest calcium deposit levels based on Alizarin Red S staining in all scaffolds. This indicated that quercetin was able to induce cell growth and mitosis, echoing the previous preliminary results. CONCLUSION Our initial results indicate that this natural herbal extract can be a good bone-based gene substitution for bone regeneration.

Keywords: calcium sulfate; silicate calcium; mesenchymal stem; calcium; calcium silicate; mesoporous calcium

Journal Title: Journal of the Formosan Medical Association = Taiwan yi zhi
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.