LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances.

Photo from archive.org

Photodegradation is an important abiotic pathway transforming organic pollutants in natural waters. Humic substances (HS), including humic and fulvic acids, are capable of accelerating the photodegradation of steroid estrogens. However,… Click to show full abstract

Photodegradation is an important abiotic pathway transforming organic pollutants in natural waters. Humic substances (HS), including humic and fulvic acids, are capable of accelerating the photodegradation of steroid estrogens. However, how the photodegradtion of the emerging pollutants influenced by HS is not clear. Thus, we studied the roles and mechanisms of HS in inducing the photodegradation of 17α-ethynylestradiol (EE2). HS generally induces EE2 photodegradation through binding and reactive species generation. Apart from hydroxyl radical (HO), the excited triplets of humic substances (3HS*) are other key reactive species degrading EE2 by abstracting electrons. HO and 3HS* were responsible for about 60% of the overall EE2 photodegradation at 250μmol HS L-1. Most of EE2 molecules bound to the HS via H-bonding, π-π and hydrophobic interactions. The binding role of HS in promoting EE2 photodegradation was rationalized by 17β-estradiol competitive binding with EE2 to the humic and fulvic acids. Furthermore, HS-promoted photodegradation can alter EE2 toxicity to wheat, rice and Ormosia plants. This study extends our knowledge on the photochemical behaviors and ecological risks of steroid estrogens in natural waters.

Keywords: ee2 photodegradation; ethynylestradiol water; photodegradation; mitigating ethynylestradiol; humic substances; water contamination

Journal Title: Journal of hazardous materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.