Prednisolone (PDS), a potent synthetic glucocorticoid is widely prescribed for its exceptional anti-inflammatory properties. Several studies have detected the environmental presence of PDS in water bodies which has led to… Click to show full abstract
Prednisolone (PDS), a potent synthetic glucocorticoid is widely prescribed for its exceptional anti-inflammatory properties. Several studies have detected the environmental presence of PDS in water bodies which has led to an ecological concern for its toxicity to non-target aquatic biota. The present study investigated the effects of exposure to PDS on different life-cycle stages and generations of the freshwater snail, Physa acuta. This continuous exposure over a period of multiple generations resulted in generational impairments at measured endpoints. LOEC values (p<0.001) for PDS exposure ranged from 32 to 4μg/L in exposed F0-F2 generations. Global DNA methylation (% 5-methyl cytosine) of adult progeny was found to be affected at higher test concentrations in comparison to the parent snails. Partially formed to completely missed growth components of shell structure and shell thinning in abnormally underdeveloped PDS exposed snails of F1 and F2 generation, was also observed in this multigenerational exposure experiment. The multigenerational study confirmed P. acuta as a promising bioindicator since critical effects of the long term glucocorticoid exposure opens up the way for further investigations on transgenerational toxicity in environmental toxicology and risk assessment and to monitor glucocorticoid pollution in aqueous ecosystem.
               
Click one of the above tabs to view related content.