LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative structure-activity relationships for reactivities of sulfate and hydroxyl radicals with aromatic contaminants through single-electron transfer pathway.

Photo from wikipedia

Sulfate radical anion (SO4•-) and hydroxyl radical (OH) based advanced oxidation technologies has been extensively used for removal of aromatic contaminants (ACs) in waters. In this study, we investigated the… Click to show full abstract

Sulfate radical anion (SO4•-) and hydroxyl radical (OH) based advanced oxidation technologies has been extensively used for removal of aromatic contaminants (ACs) in waters. In this study, we investigated the Gibbs free energy (ΔGSET∘) of the single electron transfer (SET) reactions for 76 ACs with SO4•- and OH, respectively. The result reveals that SO4•- possesses greater propensity to react with ACs through the SET channel than OH. We hypothesized that the electron distribution within the molecule plays an essential role in determining the ΔGSET∘ and subsequent SET reactions. To test the hypothesis, a quantitative structure-activity relationship (QSAR) model was developed for predicting ΔGSET∘ using the highest occupied molecular orbital energies (EHOMO), a measure of electron distribution and donating ability. The standardized QSAR models are reported to be ΔG°SET=-0.97×EHOMO - 181 and ΔG°SET=-0.97×EHOMO - 164 for SO4•- and OH, respectively. The models were internally and externally validated to ensure robustness and predictability, and the application domain and limitations were discussed. The single-descriptor based models account for 95% of the variability for SO4•- and OH. These results provide the mechanistic insight into the SET reaction pathway of radical and non-radical bimolecular reactions, and have important applications for radical based oxidation technologies to remove target ACs in different waters.

Keywords: single electron; quantitative structure; electron transfer; structure activity; aromatic contaminants; electron

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.