LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PBDEs and their structural analogues in marine environments: Fate and expected formation mechanisms compared with diverse environments.

Photo by noaa from unsplash

The concentrations and relative distributions of 27 polybrominated diphenyl ethers (PBDEs) and 17 methoxylated (MeO-) and 8 hydroxylated (OH-) BDEs were determined in marine environments including sediments, bivalves, and seawater… Click to show full abstract

The concentrations and relative distributions of 27 polybrominated diphenyl ethers (PBDEs) and 17 methoxylated (MeO-) and 8 hydroxylated (OH-) BDEs were determined in marine environments including sediments, bivalves, and seawater along the southern coast of South Korea to understand their fates and possible formation mechanisms. The relative and substituent distributions of the PBDEs and their structural analogues varied according to the characteristics of the media. PBDEs were dominant in marine sediments and seawater, whereas MeO-BDEs made the highest contributions in bivalves. Similar patterns were previously identified in inland environments in Korea, except in river water where OH-BDEs were dominant. The natural formation of structural analogues might be the main mechanism in marine, as ortho-substituted naturally occurring MeO- and OH-BDEs were dominant in all media and seemed to be more produced than in inland environments. In addition, the higher concentrations of meta-substituted MeO-BDEs nearshore than offshore was observed. This is the first study comparing marine (near- and offshore) and inland to understand the differences in their fate and possible formation mechanisms in each environmental conditions.

Keywords: structural analogues; marine environments; meo bdes; formation; pbdes structural; formation mechanisms

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.