LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.

Photo from wikipedia

Treatment of textile dyeing industry (TDI) effluent was investigated using hydrodynamic cavitation (HC) and in combination with advanced oxidation reagents such as air, oxygen, ozone and Fenton's reagent. Slit venturi… Click to show full abstract

Treatment of textile dyeing industry (TDI) effluent was investigated using hydrodynamic cavitation (HC) and in combination with advanced oxidation reagents such as air, oxygen, ozone and Fenton's reagent. Slit venturi was used as the cavitating device in HC reactor. The effects of process parameters such as inlet pressure, cavitation number, effluent concentration, ozone and oxygen flow rate, loading of H2O2 and Fenton's reagent on the extent of reduction of TOC, COD and color were studied. Efficiency of the hybrid treatment processes were evaluated on the basis of their synergetic coefficient. It was observed that almost 17% TOC, 12% COD, and 25% color removal was obtained using HC alone at inlet pressure of 5bar and pH of 6.8. The rate of reduction of TOC and COD decreased with dilution of the samples. HC in combination with Fenton's reagent (FeSO4ยท7H2O:H2O2 as 1:5) was most effective with reduction of 48%TOC and 38% COD in 15min and 120min respectively with almost complete decolorization (98%) of the TDI effluent. Whereas HC in combination with oxygen (2L/min) and ozone (3g/h) produced reduction of 48% TOC, 33% COD, 62% decolorization and 48% TOC, 23% COD, 88%, decolorization of TDI effluent respectively.

Keywords: combination; cavitation; treatment; toc cod; effluent

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.